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Abstract. For a number field K ⊆ R, consider the graph G(Kd), whose vertices are elements of Kd, with
an edge between any two points at (Euclidean) distance 1. We show that G(K2) is not connected while
G(Kd) is connected for d ≥ 5. We also give necessary and sufficient conditions for the connectedness of
G(K3) and G(K4).

1 Introduction

For a field K ⊆ R, let G(Kd) denote the graph with vertex set Kd, with an edge between two points if and
only if their Euclidean distance is 1. We may sometimes refer to this graph simply as Kd. A well-known and
still unsolved problem [4] asks for the chromatic number of the graph G(R2). De Bruijn and Erdös [3] show
(using the Axiom of Choice) that the problem of n-coloring a graph is equivalent to that of n-coloring all its
finite subgraphs. Furthermore, Benda and Perles [2] show that any finite subgraph of G(R2) may be realized
as a subgraph of G(K2) for some suitably chosen real number field (which depends on the finite subgraph).

Fischer [5] introduces the concept of an additive coloring (see Definition 1.1). These seem to be the easiest
kinds of colorings to describe, although generally they require many colors. In fact, for any integer N , we
can find a real quadratic field K such that G(K2) has no additive coloring with fewer than N colors. For
this reason, we restrict our attention to the question of the existence of an additive coloring, without regard
to the number of colors it actually uses.

Woodall [11] shows that G(Q2) is two-colorable. This result is generalized by Johnson [8], who shows
that G(Q(

√
n)2) is two-colorable for positive squarefree integers n ≡ 1 or 2 mod 4. Fischer [5] shows that

G(Q(
√
n)2) is three-colorable for positive squarefree integers n ≡ 0 or 1 mod 3. In each of these cases, the

coloring exhibited arises from an additive coloring.
The existence of an additive coloring of G(Kd) is mutually exclusive with the condition that the graph

is connected. This is shown in Propositions 2.3 and 3.4. The question of connectivity of these graphs is the
main focus of this paper. This is a natural approach, since the colorability of a graph is a measure of its
connectivity.

Benda and Perles [2] show that G(Q2), G(Q3) and G(Q4) are disconnected, while G(Q5) is connected.
Zaks [12] shows that G(Q(

√
n)2) is disconnected for squarefree positive integers n ≡ 1, 2, 3, 5 or 6 mod 8. He

also shows that for a number field K, the graphs G(Kd) are connected for sufficiently large d. Fischer [6]
shows that G(Q(

√
n1, . . . ,

√
nd)

2) is disconnected.
One usually considers a number field without regard to a fixed embedding into R or C. However, the

vertices (x1, . . . , xd) and (y1, . . . , yd) are adjacent if and only if (x1 − y1)
2 + · · · + (xd − yd)

2 = 1, so the
graph G(Kd) is independent of any embedding. Using the above definition, we may define G(Kd) for any
number field K. Indeed, we shall not make the hypothesis that K has a real embedding; its only purpose is
to provide a geometric significance.
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We shall use some standard number theory notation. If K is a number field, then OK denotes the ring
of integers (i.e. integral closure of Z) in K. By a prime of K, we mean a non-zero prime ideal of OK ; these
are denoted by gothic letters: P, p. Also, OK,p denotes the localization of OK at p, and k(p) denotes the
residue field at p. The p-adic valuation is denoted by vp, and Kp denotes the completion of K with respect
to this valuation. Finally, Fq denotes the finite field with q elements.

Note that the connected components of G(Kd) are all translates of one another, so that the chromatic
number of G(Kd) is the same as the chromatic number of any of its components. Let G0(K

d) denote the
connected component of the origin. This is certainly an additive group under componentwise addition.
Fischer [5] makes the following definition.

1.1 Definition. An additive coloring of G0(K
d) is a group homomorphism φ : G0(K

d) → G to a finite
additive group, which is also a coloring of G0(K

d). By abuse of notation, we also call this an additive
coloring of G(Kd).

1.2 Definition. The unit sphere, denoted Sd−1(K), is the set {(x1, . . . , xd) ∈ Kd |x2
1+ · · ·+x2

d = 1}. Note
that, by definition, Sd−1(K) generates G0(K

d) as an additive group.

1.3 Remark. (Fischer [5]) A group homomorphism φ : G0(K
d) −→ G is a coloring if and only if the

intersection Sd−1(K) ∩ kerφ is empty.

1.4 Remarks. If G(Kd) is connected, then G0(K
d) = G(Kd) is divisible, so any homomorphism to a

finite group is trivial. Thus G(Kd) has no additive coloring if it is connected. Also note that the connected
components of G(Kd) are in one-to-one correspondence with the cosets of G0(K

d). Since G(Kd) is divisible,
so is the quotient G(Kd)/G0(K

d). In particular, this quotient is either trivial or infinite, so G(Kd) has
infinitely many connected components if it is disconnected.

2 The case d = 2

For most of this section we assume that
√
−1 /∈ K. We consider the possibility

√
−1 ∈ K in Proposition 2.9.

Identify K2 with L = K(i) = K ⊕Ki, where i2 = −1. By complex conjugation, we mean the non-trivial
element of Gal(L/K), so i = −i. Under this identification, we may describe S1(K) as {α ∈ L | αα = 1}.
Thus S1(K) is a subgroup of L∗ and G0(K

2) is a subring of L. We denote this subring by B and let
A = B ∩K.

2.1 Remark. Elements of S1(K) are units in B, so from Remark 1.3, a ring homomorphism φ : B → R is
a coloring if and only if φ(B) 6= 0.

2.2 Lemma. K [respectively L] is the field of fractions of A [respectively B].

Proof. If x ∈ K then z = (1− x2 + 2xi)/(1 + x2) ∈ S1(K). Thus 4x/(1 + x2) = i(z − z) and 4/(1 + x2) =
z + z + 2 are in A. Therefore K is the field of fractions of A. Since i ∈ B, its field of fractions is L. ✷

2.3 Proposition. The following conditions are equivalent.
i) S1(K) is integral at some prime of L.
ii) B is integral at some prime of L.
iii) K2 has an additive coloring.
iv) K2 is not connected.

Proof. i) ⇔ ii) is trivial.
ii) ⇒ iii). Suppose B is integral at p. Then the composition B →֒ OL,p → k(p) is an additive coloring.

2



iii) ⇒ iv) from Remark 1.4.
iv) ⇒ ii). B is not a field so it has a non-zero prime ideal b. Let C be the integral closure of B. By the
Cohen-Seidenberg “going up” theorem [1, Theorem 5.11, page 62], C has a prime ideal c such that c∩B = b.
Then c ∩OL is a prime of L at which B is integral. ✷

2.4 Lemma. Let P be a prime of L lying over the prime p of K. Then the following conditions are
equivalent:

i) p either ramifies or is inert in L.
ii) P = P.
iii) S1(K) is integral at P.

Proof. i) ⇒ ii) is trivial.
ii) ⇒ iii). For α ∈ S1(K), we have 1 = αα, so 0 = vP(1) = vP(α)+vP(α) = 2vP(α). Thus S1(K) is integral
at P.
iii) ⇒ i). Otherwise, p splits in L as PP, (with P 6= P), since Gal(L/K) acts transitively on the primes of
L lying over p. Now choose α ∈ P, α /∈ P. Then α/α ∈ S1(K) is not integral at P, a contradiction. ✷

2.5 Theorem. Suppose K is a number field with
√
−1 /∈ K. Then infinitely many primes of K are inert

in L = K(
√
−1). Thus the graph G(K2) is not connected and hence admits an additive coloring.

Proof. Only finitely many primes of K ramify in L. Therefore, if all but finitely many primes of K split
in L, then ζL(s) (the zeta function of L) differs from ζ2K(s) by only finitely many Euler factors. However,
ζF (s) has a simple pole at s = 1, for any number field F [10, Theorem 42, page 188], a contradiction. The
second assertion then follows. ✷

2.6 Example. K = Q. The rational prime p = (2) ramifies in L as P2, where P = (1+ i), so B is integral
at P. The composition B →֒ OL,P → k(P) ∼= F2 is the additive 2-coloring. If p is a prime congruent to
1 mod 4, then we may write p2 = a2 + b2, with a, b 6= 0. Then (a ± bi)/p ∈ B, and it follows easily that
1/p ∈ B. Thus Z[ 15 ,

1
13 ,

1
17 , . . .][i] ⊆ B. On the other hand, B is integral at P and at all primes (p), where p

is a rational prime congruent to 3 mod 4. Therefore A = Z[ 15 ,
1
13 ,

1
17 , . . .] and B = A[i].

In general, the determination of A and B is more difficult, as they need not be integrally closed.

2.7 Example. K = Q(
√
5). Again, p = (2) is prime and ramifies in L as P2, where P = (1 + i). Thus

S1(K) is integral at P, so we have an additive coloring B → k(P) ∼= F4. Since the residue field extension
k(P)/k(p) is trivial, complex conjugation acts trivially on it, whence α ≡ α mod P for α ∈ S1(K). Then
1 = αα ≡ α2 mod P, so α ≡ 1 mod P. This shows that the image of the coloring B → k(P) ∼= F4 is the
subfield F2. Also, neither A nor B is integrally closed. (In particular, (1 +

√
5)/2 /∈ A.)

2.8 Remark. Theorem 2.5 does not necessarily hold for infinite algebraic extensions. In particular, let
K = A be the field of real algebraic numbers. Then L = K(i) is algebraically closed. Let β be an arbitrary
element of K. For a sufficiently large positive integer N , the polynomial x2 − (β/N)x + 1 factors over L as
(x− α)(x − α), so β = N(α+ α) ∈ B. It follows that G(A2) is connected.

We now return to consider the possibility that −1 is a square in K.

2.9 Proposition. Suppose K is a number field containing i, where i2 = −1. Then G(K2) is connected.

Proof. For any non-zero x ∈ K, we have

(x, 0) = 2

(

4x2 + 9

12x
, i
4x2 − 9

12x

)

+ 2

(

4x2 + 9

12x
,−i

4x2 − 9

12x

)

−
(

x2 + 9

6x
, i
x2 − 9

6x

)

−
(

x2 + 9

6x
,−i

x2 − 9

6x

)

,

so that (x, 0) ∈ G0(K
2). It follows that G(K2) is connected. ✷
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3 The case d > 2

Throughout this section, K will denote an arbitrary number field, Ad(K) or simply Ad will denote the set
{x ∈ K | (x, 0, . . . , 0) ∈ G0(K

d)} and O(d,K) the group of d-by-d orthogonal matrices over K. Note that
the A of the previous section is just A2. Although we no longer have a nice ring structure on Kd, we will
soon see that Ad is in fact a ring. A few preliminary observations are in order.

3.1 Remarks. Note that if d ≤ e, then Ad(K) ⊆ Ae(K). Also note that G(Kd) is connected if and only
if Ad(K) = K. Thus, if G(Kd) is connected, then so is G(Ke) for e ≥ d. Finally, note that G0(K

d) is
O(d,K)-stable, since it is generated by Sd−1(K), which is O(d,K)-stable.

3.2 Proposition. The group O(d,K) acts transitively on Sd−1(K).

Proof. [9, Proposition 4.7, page 19]. ✷

3.3 Corollary. Ad(K) is a subring of K whose field of fractions is K. In particular, G(Kd) is disconnected
if and only if there is a prime of K at which Ad(K) is integral.

Proof. Let ~e = (1, 0, . . . , 0). We’ve defined Ad as {x ∈ K | x · ~e ∈ G0(K
d)}. From Proposition 3.2 this is

the same as {x ∈ K | x · Sd−1(K) ⊆ G0(K
d)} = {x ∈ K | x · G0(K

d) ⊆ G0(K
d)}, which is a subring of K.

Its field of fractions is K, since A2(K) ⊆ Ad(K) and the field of fractions of A2(K) is K (from Lemma 2.2).
The second statement follows as in the proof of Proposition 2.3, mutatis mutandis. ✷

3.4 Proposition. Kd has an additive coloring if and only if it is not connected.

Proof. We’ve already seen the “only if” part (Remark 1.4), so suppose that G(Kd) is not connected. Then
from Corollary 3.3, Ad is integral at some prime p of K. Let p be the rational prime over which p lies. Then
~e = (1, 0, . . . , 0) ∈ Sd−1(K) is not p-divisible in G0(K

d), so from Proposition 3.2, Sd−1(K) ∩ pG0(K
d) = ∅.

Thus G0(K
d) → G0(K

d)/pG0(K
d) is an additive coloring. ✷

3.5 Definition. If K is a field with valuation v, we say that Sd−1(K) is integral with respect to v if each
v(xi) ≥ 0 for every (x1, . . . , xd) ∈ Sd−1(K). If K is a number field and p is a prime of K, we say that
Sd−1(K) is integral at p if it is integral with respect to vp. If K is a p -adic field with valuation v, we simply
say that Sd−1(K) is integral if it is integral with respect to v.

We now focus our attention on the case d = 3. We state the following lemma in some generality, since
we need it for p -adic fields as well as number fields.

3.6 Lemma. Let K be a field with valuation v. Suppose that S2(K) is not integral with respect to v.
Then for any C > 0, we may write 1 = x2 + y2 + z2 in K with v(x) < −C.

Proof. By hypothesis, we may write 1 = x2
0 + y20 + z20 with v(x0) < 0. Let x1 = x2

0. Then 1 − x2
1 =

(1− x2
0)(1 + x2

0) = (y20 + z20)(1 + x2
0) = y21 + z21 , for y1 = y0 − x0z0 and z1 = z0 + x0y0. Since v(x1) = 2v(x0),

by repeating this process, we may write 1 = x2 + y2 + z2 with v(x) arbitrarily negative. ✷

We next show that integrality of S2(K) may be tested in the local field.

3.7 Proposition. Let p be a prime of K and let Kp be the completion of K at p. Then S2(K) is integral
at p if and only if S2(Kp) is integral.

Proof. If S2(Kp) is integral, then certainly S2(K) is integral at p. Conversely, suppose that S2(Kp) is not
integral. Then from Lemma 3.6 we may write 1 = x2 + y2 + z2 in Kp with vp(2x) < 0. Furthermore, one
of vp(y), vp(z) must also be negative; suppose the former is. In K, choose approximations x0, y0, z0 to x,
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y, z, respectively, such that vp(x0) = vp(x), vp(y0) = vp(y), vp(z0) = vp(z) and x2
0 + y20 + z20 = 1 + ǫ, where

vp(ǫ) > 0. Then we have

(2x0y0)
2 + (2x0z0)

2 + (x2
0 − y20 − z20)

2 = (x2
0 + y20 + z20)

2 = (1 + ǫ)2.

Now divide by (1 + ǫ)2 and note that vp(2x0y0/(1 + ǫ)) = vp(2x0y0) = vp(2xy) < 0. Thus S2(K) is not
integral at p. ✷

3.8 Proposition. Let p be an odd prime of K. Then S2(K) is not integral at p.

Proof. Let p be the odd rational prime over which p lies. As x ranges over all integers, there are (p+1)/2
different residue classes for 1 + x2 mod p. Similarly, −y2 takes values in (p + 1)/2 different residue classes.
Thus, by the pigeonhole principle, there are integers x and y such that p divides 1 + x2 + y2. Then

(

1− x2 − y2

1 + x2 + y2
,

2x

1 + x2 + y2
,

2y

1 + x2 + y2

)

∈ S2(Q) ⊆ S2(K).

Since p does not divide both 2x and 2y, this shows that S2(K) is not integral at p. ✷

Therefore we need only consider even primes of K. These are handled by the following.

3.9 Proposition. Let K be a finite extension of Q2. The following conditions are equivalent:
i) S2(K) is not integral.
ii) We may write −1 = x2 + y2 in K.
iii) [K : Q2] is even.

Proof. i) ⇒ ii). From Lemma 3.6, we may write 1 = x2 + y2 + z2 in K with v(2x) < 0. Then we have
−(1− (1/x)2) = (y/x)2 + (z/x)2. Since v(2x) < 0, the series

(

1− 1

x2

)1/2

=

∞
∑

n=0

(−1)nx−2n

(

1
2
n

)

converges, so 1− (1/x)2 is a square in K. Therefore, −1 is a sum of two squares in K.
ii) ⇒ iii). Suppose to the contrary that [K : Q2] is odd. By hypothesis, −1 is a norm from K(

√
−1) to K,

so −1 = (−1)[K:Q2] is a norm from K(
√
−1) to Q2. However, it is easy to check that −1 is not even a norm

from Q2(
√
−1) to Q2. This contradiction shows that [K : Q2] must be even.

iii) ⇒ i). We distinguish two cases: K has even inertial degree over Q2; K has even ramification degree
over Q2. In the first case, K contains the unique unramified quadratic extension of Q2, which is just Q2(ζ),
where ζ is a primitive cube root of 1. Then we have 1 = (1/2)2 + (1 + ζ/2)2 + (1 + ζ2/2)2.

In the second case, let t be a uniformizing parameter and let v(2) = 2n. Then write 2 = αt2n, with
v(α) = 0. Let the residue field of K be F2r . The image of α in F2r has multiplicative order (dividing) 2r− 1,

so v(α2r + α) > 0. Let z = α2r−1

tn. Then z2 + 2 = (α2r +α)t2n, so v(z2 +2) > v(2). If z2 + 2 6= 0, we have

1 =

(

2

z2 + 2

)2

+

(

2z

z2 + 2

)2

+

(

z2

z2 + 2

)2

and v(2/(z2+2)) < 0. If z2+2 = 0, replace z by z(1+ ǫ) for some small ǫ and use the above. (Alternatively,
write 1 = (3/4)2 + (3/4)2 + (z/4)2.) ✷

Translating the criterion of Proposition 3.9 into the notion of the splitting of primes, we have proven the
following.
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3.10 Theorem. The graph G(K3) is connected if and only if the rational prime (2) splits as Pe1
1 · · ·Per

r ,
with each eifi even, where fi is the degree of the residue field extension k(Pi)/F2. In particular, if [K : Q]
is odd, then G(K3) is not connected.

Proof. Note that eifi is just the degree of the local extension KPi
/Q2. The second statement follows since

[K : Q] =
∑

eifi. ✷

3.11 Theorem. The graph G(K4) is connected if and only if G(K3) is connected.

Proof. If G(K3) is connected, then so is G(K4). Conversely, suppose G(K4) is connected and let p

be any prime of K. We must show that S2(K) is not integral at p. Since K4 is connected, we have
(x, y, z, w) ∈ S3(K) with vp(2x) < 0. Also, 4x2 = 2(x2+y2)+2(x2+z2)−2(y2+z2), so not all three quantities
2(x2+ y2), 2(x2+ z2), 2(y2+ z2) can be integral at p. Without losing generality, (we no longer need the fact
that vp(2x) < 0), suppose that vp(2(x

2+y2)) < 0. Then (x2+y2−z2−w2, 2(xw−yz), 2(xz+yw)) ∈ S2(K)
and x2 + y2 − z2 − w2 = 2(x2 + y2)− 1, so S2(K) is not integral at p. ✷

3.12 Examples. S2(Q) is integral at (2), so G(Q3) (and thus also G(Q4)) is not connected.
Let K = Q(

√
2). The rational prime p = (2) ramifies in K as P2, where P = (

√
2). Thus S2(K) is not

integral at P, so G(K3) is connected.

The case d > 4 is now very easy to treat.

3.13 Theorem. The graph G(Kd) is connected for all d > 4.

Proof. It suffices to show that G(K5) is connected. Note that (1/2, 0, 0, 0, 0) = (1/4, 1/4, 1/4, 3/4, 1/2)+
(1/4,−1/4,−1/4,−3/4,−1/2), so 1/2 ∈ A5(K). Thus A5 is not integral at any prime, and therefore is all
of K. ✷

4 Further Questions

We pose here several questions for further investigation, keeping in mind the goal of determining the chro-
matic number of R2.

4.1 Question. What do the connected components look like? Describe the rings Ad(K) and the connected
components G0(K

d) explicitly. This has been done in some cases by Fischer [6]. When are the rings Ad(K)
integrally closed? Is G0(K

3) always equal to (A3(K))3? The answer to the corresponding question is “no”
for both G0(K

2) and G0(K
4).

4.2 Question. What types of colorings are there? Fischer [5] shows that a 2-coloring of G(Kd) necessarily
arises from an additive coloring. What can be said about n-colorings for other values of n? Find a way to
explicitly describe non-additive colorings.

4.3 Question. Can we reduce the problem to a smaller field? Benda and Perles [2] show that any finite
subgraph of G(R2) may be found in G(A2), where A is the field of real algebraic numbers. Is there a smaller
subfield of R with the same property? In particular, may we find all finite subgraphs in G(K2), where K is
the field of real constructible numbers?

For the sake of completeness, and also because [2] is not readily available, we include the following proof.
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4.4 Theorem. (Benda, Perles [2]) Let G be a finite subgraph of G(R2). Then G is isomorphic to a finite
subgraph of G(A2), where A is the field of real algebraic numbers.

Proof. We may write a first order statement expressing the property that G(K2) has a subgraph isomorphic
to G. By Tarski’s theorem (see [7, page 340]), any such statement which holds for a given real closed field
(e.g. R) holds for all real closed fields, in particular A. ✷
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