•
James Bitner, Tiling
5n × 12
Rectangles with Y-pentominoes,
Journal of Recreational Mathematics
(1974), no. 4, pp. 276-278.
[MR]
•
Olivier Bodini, Tiling a Rectangle with Polyominoes,
Discrete Models for Complex Systems
(DMCS'03), pp. 81-88.
[MR]
•
Maarten Bos,
Tiling Squares with Two Different Hexominoes,
Cubism For Fun
(July 2007), pp. 4-7.
•
C.J. Bouwkamp and D.A. Klarner, Packing a Box with Y-pentacubes,
Journal of Recreational Mathematics
(1970), no. 1, pp. 10-26.
•
Chris Bouwkamp, The Cube-Y Problem,
Cubism For Fun
(December 1990 - January 1991), part 3, pp. 30-43.
•
Andrejs Cibulis and Ilvars Mizniks, Tiling Rectangles with Pentominoes,
Latvijas Universitātes Zinātniskie Raksti
(1998) pp. 57-61.
•
Andris Cibulis,
Packing Boxes with N-tetracubes,
Crux Mathematicorum with Mathematical Mayhem
(October 1997), no. 6, pp. 336-342.
•
Andris Cibulis and Andy Liu, Packing Rectangles with the L and P Pentominoes,
Math Horizons
(November 2001), no. 2, pp. 30-31.
•
Andrew L. Clarke,
A Pentomino Conjecture, Problem 600,
Journal of Recreational Mathematics
(1977-78), no. 1, p. 54.
◦ Solution by Mike Beeler, Journal of Recreational Mathematics (1979-80), no. 1, pp. 63-64.
◦ Solution by Mike Beeler, Journal of Recreational Mathematics (1979-80), no. 1, pp. 63-64.
•
Andrew L. Clarke,
Packing Boxes with Congruent Polycubes,
Journal of Recreational Mathematics
(1977-78), no. 3, pp. 177-182.
•
Karl A. Dahlke,
The Y-hexomino has order 92,
Journal of Combinatorial Theory, Series A
(1989), no. 1, pp. 125-126.
[MR]
•
Karl A. Dahlke,
A Heptomino of Order 76,
Journal of Combinatorial Theory, Series A
(1989), no. 1, pp. 127-128.
[MR]
◦ Erratum, Journal of Combinatorial Theory, Series A (1990), no. 2, p. 321. [MR]
◦ Erratum, Journal of Combinatorial Theory, Series A (1990), no. 2, p. 321. [MR]
•
Karl A. Dahlke,
Solomon W. Golomb and Herbert Taylor,
An Octomino of High Order,
Journal of Combinatorial Theory, Series A
(1995), no. 1, pp. 157-158.
[MR]
•
N.G. de Bruijn and D.A. Klarner,
A finite basis theorem for packing boxes with bricks,
Philips Research Reports
(1975), pp. 337-343.
•
Raymond R. Fletcher III, Tiling Rectangles with Symmetric Hexagonal Polyominoes,
Proceedings of the Twenty-seventh Southeastern International Conference
on Combinatorics, Graph Theory and Computing, Baton Rouge, LA, 1996,
Congressus Numerantium
(1996), pp. 3-29.
[MR]
•
Julian Fogel, Mark Goldenberg and Andy Liu,
Packing Rectangles with Y-Pentominoes,
Mathematics and Informatics Quarterly
(2001), no. 3, pp. 133-137.
•
Martin Gardner, Polyominoes and Rectification,
Chapter 13 in Mathematical Magic Show,
The Mathematical Association of America, 1989.
•
Frits Göbel, Packing with Congruent Shapes,
Cubism For Fun
(December 1989), pp. 13-20.
•
Frits Göbel, Prime pentacube packing,
Cubism For Fun
(February 1994), pp. 24-25.
•
S.W. Golomb,
Covering a Rectangle with L-tetrominoes, Problem E 1543,
American Mathematical Monthly
(November 1962), no. 9, p. 920.
◦ Solution to Problem E 1543, D.A. Klarner, American Mathematical Monthly (August-September 1963), no. 7, pp. 760-761.
◦ Solution to Problem E 1543, D.A. Klarner, American Mathematical Monthly (August-September 1963), no. 7, pp. 760-761.
•
Solomon W. Golomb,
Tiling with Polyominoes,
Journal of Combinatorial Theory
(1966) pp. 280-296.
[MR]
•
Solomon W. Golomb,
Tiling with Sets of Polyominoes,
Journal of Combinatorial Theory
(1970) pp. 60-71.
[MR]
•
Solomon W. Golomb,
Polyominoes Which Tile Rectangles,
Journal of Combinatorial Theory, Series A
(1989), no. 1, pp. 117-124.
[MR]
•
Solomon W. Golomb, Tiling Rectangles with Polyominoes,
Chapter 8 in Polyominoes, Second edition,
Princeton University Press, 1994.
•
Solomon W. Golomb,
Tiling Rectangles with Polyominoes,
in Mathematical entertainments, edited by David Gale,
The Mathematical Intelligencer
(1996), no. 2, pp. 38-47.
[MR]
•
Jenifer Haselgrove, Packing a Square with Y-pentominoes,
Journal of Recreational Mathematics
(1974), no. 3, p. 229.
•
Robert Hochberg and Michael Reid,
Tiling with Notched Cubes,
Discrete Mathematics
(2000), no. 1-3, pp. 255-261.
[MR]
[Zbl]
•
Ross Honsberger, Box packing problems, chapter 8 in Mathematics Gems II,
the Mathematical Association of America, Washington D.C. 1976.
◦ Ross Honsberger, Packungsprobleme, chapter 8 in Mathematische Juwelen, Springer Vieweg, 1982 (German translation of previous)
◦ Ross Honsberger, Packungsprobleme, chapter 8 in Mathematische Juwelen, Springer Vieweg, 1982 (German translation of previous)
•
Charles H. Jepsen, Lowell Vaughn and Daren Brantley,
Orders of L-shaped Polyominoes,
Journal of Recreational Mathematics
(2003-2004), no. 3, pp. 226-231.
•
Michał Kieza,
Zbudujmy z klocków prostopadłościan (Polish),
Matematyka-Społeczeństwo-Nauczanie
(2011), pp. 32-40.
•
David A. Klarner,
Packing a Rectangle with Congruent N-ominoes,
Journal of Combinatorial Theory
(1969) pp. 107-115.
[MR]
•
David A. Klarner, Letter to the Editor,
Journal of Recreational Mathematics
(1970), no. 4, p. 258.
•
David A. Klarner,
A Finite Basis Theorem Revisited,
Technical Report CS-TR-73-338, Stanford University, February 1973.
•
David Klarner, A Search for N-pentacube Prime Boxes,
Journal of Recreational Mathematics
(1979-80), no. 4, pp. 252-257.
[MR]
•
D.A. Klarner and F. Göbel, Packing boxes with congruent figures,
Indagationes Mathematicae
(1969) pp. 465-472.
[MR]
•
Earl S. Kramer, Tiling Rectangles with T and C Pentominoes,
Journal of Recreational Mathematics
(1983-84), no. 2, pp. 102-113.
[MR]
•
Earl S. Kramer and Frits Göbel,
Tiling Rectangles with Pairs of Pentominoes,
Journal of Recreational Mathematics
(1983-84), no. 3, pp. 198-206.
[MR]
•
Rodolfo Marcelo Kurchan, Letter to the Editor,
Journal of Recreational Mathematics
(1991), no. 1, p. 5.
•
Rodolfo Marcelo Kurchan, Letter to the Editor,
Journal of Recreational Mathematics
(1992), no. 3, pp. 184-185.
•
Miklós Laczkovich,
Tiling with T-tetrominoes, Problem 1263,
Mathematics Magazine
(April 1987), no. 2, p. 114.
◦ Solution to Problem 1263, Jerrold W. Grossman, Mathematics Magazine (April 1988), no. 2, pp. 119-120.
◦ Solution to Problem 1263, Jerrold W. Grossman, Mathematics Magazine (April 1988), no. 2, pp. 119-120.
•
Andy Liu, Packing Rectangles with Polynominoes,
Mathematical Medley
(June 2003), no. 1, pp. 2-11.
•
T.W. Marlow, Grid Dissections,
Chessics
(1985), pp. 78-79.
•
William Rex Marshall,
Packing Rectangles with Congruent Polyominoes,
Journal of Combinatorial Theory, Series A
(1997), no. 2, pp. 181-192.
[MR]
•
Jean Meeus, The Smallest U-N Square,
Journal of Recreational Mathematics
(1985-86), no. 1, p. 8.
•
Jean Meeus, Letter to the Editor,
Journal of Recreational Mathematics
(1985-86), no. 1, pp. 49, 51.
•
Michael Reid,
Letter to the Editor,
Journal of Recreational Mathematics
(1993), no. 2, pp. 149-150.
•
Michael Reid,
Tiling Rectangles and Half Strips with Congruent Polyominoes,
Journal of Combinatorial Theory, Series A
(1997), no. 1, pp. 106-123.
[MR]
[Zbl]
•
Michael Reid,
Tiling a Square with Eight Congruent Polyominoes,
Journal of Combinatorial Theory, Series A
(1998), no. 1, p. 158.
[Zbl]
•
Michael Reid,
Tiling with Similar Polyominoes,
Journal of Recreational Mathematics
(2002-2003), no. 1, pp. 15-24.
•
Michael Reid,
Tile Homotopy Groups,
L'Enseignement Mathématique
(2003), no. 1-2, pp. 123-155.
[MR]
[Zbl]
•
Michael Reid,
Klarner Systems and Tiling Boxes with Polyominoes,
Journal of Combinatorial Theory, Series A
(2005), no. 1, pp. 89-105.
[MR]
[Zbl]
•
Michael Reid,
Asymptotically Optimal Box Packing Theorems,
The Electronic Journal of Combinatorics
(2008), no. 1, R78, 19 pp.
[MR]
[Zbl]
•
Michael Reid,
Many L-Shaped Polyominoes Have Odd Rectangular Packings,
Annals of Combinatorics
(2014) pp. 341-357.
[MR]
[Zbl]
•
Karl Scherer,
Some New Results on Y-pentominoes,
Journal of Recreational Mathematics
(1979-80), no. 3, pp. 201-204.
[MR]
•
Karl Scherer,
Heptomino Tessellations, Problem 1045,
Journal of Recreational Mathematics
(1981-82), no. 1, p. 64.
◦ Solutions by Scherer, and Karl A. Dahlke, Journal of Recreational Mathematics (1989), no. 3, pp. 221-223.
◦ Solution by Karl A. Dahlke, Journal of Recreational Mathematics (1990), no. 1, pp. 68-69.
◦ Solutions by Scherer, and Karl A. Dahlke, Journal of Recreational Mathematics (1989), no. 3, pp. 221-223.
◦ Solution by Karl A. Dahlke, Journal of Recreational Mathematics (1990), no. 1, pp. 68-69.
•
Karl Scherer,
A Puzzling Journey To The Reptiles And Related Animals,
privately published, Auckland, New Zealand, 1987.
•
Karl Scherer,
Pentacube Packing Problems, Problem 1615,
Journal of Recreational Mathematics
(1988), no. 1, p. 78.
◦ Solution by Richard I. Hess, Journal of Recreational Mathematics (1989), no. 1, pp. 74-75.
◦ Solution by Karl Scherer, Journal of Recreational Mathematics (1992), no. 1, pp. 62-64.
◦ Solution by Richard I. Hess, Journal of Recreational Mathematics (1989), no. 1, pp. 74-75.
◦ Solution by Karl Scherer, Journal of Recreational Mathematics (1992), no. 1, pp. 62-64.
•
Karl Scherer,
The U-Pentacube Packing Problem, Problem 1963,
Journal of Recreational Mathematics
(1992), no. 2, p. 146.
◦ Solutions by Brian Barwell and Michael Reid, Journal of Recreational Mathematics (1993), no. 3, pp. 226-229.
◦ Solutions by Brian Barwell and Michael Reid, Journal of Recreational Mathematics (1993), no. 3, pp. 226-229.
•
Karl Scherer,
The T-Pentacube Packing Problem, Problem 1990,
Journal of Recreational Mathematics
(1992), no. 3, p. 224.
◦ Solutions by Frits Göbel and Michael Beeler, Journal of Recreational Mathematics (1994), no. 1, pp. 66-67.
◦ Solutions by Frits Göbel and Michael Beeler, Journal of Recreational Mathematics (1994), no. 1, pp. 66-67.
•
Karl Scherer,
The primes of a certain pentacube,
Journal of Recreational Mathematics
(1994), no. 1, pp. 1-2.
•
Robert Spira,
A Pavement of Tetrominoes, Problem E 1786,
American Mathematical Monthly
(May 1965), no. 5, p. 543.
◦ Solution to Problem E 1786, American Mathematical Monthly (June-July 1966), no. 6, p. 673.
◦ Solution to Problem E 1786, American Mathematical Monthly (June-July 1966), no. 6, p. 673.
•
Robert Spira,
Impossibility of Covering a Rectangle with L-Hexominoes, Problem E 1983,
American Mathematical Monthly
(April 1967), no. 4, p. 439.
◦ Solution to Problem E 1983, Dennis Gannon, American Mathematical Monthly (August-September 1968), no. 7, pp. 785-786.
◦ Solution to Problem E 1983, Dennis Gannon, American Mathematical Monthly (August-September 1968), no. 7, pp. 785-786.
•
I. N. Stewart and A. Wormstein, Polyominoes of Order 3 Do Not Exist,
Journal of Combinatorial Theory, Series A
(September 1992), no. 1, pp. 130-136.
[MR]
•
Pieter Torbijn and Aad van der Wetering,
Tiling Squares with Two Different Pentominoes,
Cubism For Fun
(November 2005), pp. 16-17.
•
Johan van de Konijnenberg,
Finding Prime Boxes of Pentacubes,
Cubism For Fun
(July 2009), pp. 18-20.
•
D.W. Walkup,
Covering a Rectangle with T-tetrominoes,
American Mathematical Monthly
(November 1965), no. 9, pp. 986-988.
[MR]
•
Ingo Wrede, Rechteckzerlegungen mit kleinen Polyominos, Diplomarbeit,
(1990) Technische Universität Braunschweig.