The following is a hypertext version of an article that appeared in
Cubism For Fun
36 (February 1995) pp. 18-20.
I have enhanced it with images of the positions, and also added
minimal maneuvers for all positions.
You can also see the original
text version.
I have also calculated all minimal maneuvers, using my
optimal cube solver.
Note that some of the cubes appear the same, but differ on the
three hidden faces.
A Czech Check Problem
by Michael Reid
In [1] David Singmaster gives the following problem, attributed to
the Czech weekly Mlady Svet.
Find positions of the cube that have exactly 8 squares correct
on every face.
Since I haven't seen a solution to this problem, I thought I'd
share mine. First let us distinguish between "pattern" and "position".
A "position" refers to one of the 43252003274489856000 states of the
cube, while a "pattern" is an equivalence class of positions under
the group of symmetries (rotations and reflections) of the cube.
For example, "cube within a cube" describes a single pattern, whereas
there are 8 positions representing this pattern.
We will show that there are 56 patterns and 2248 positions which
have exactly 8 squares correct on every face, and for each pattern we'll
give a representative.
Consider the 6 squares that are on the wrong face. We'll first
consider the various combinations of centers, edges and corners to
which these 6 squares belong. First note that if any centers are out
of place, then either 4 or 6 are. Therefore the centers contribute
either 0, 4 or 6 squares to the total of 6. Also, any corner that
is out of place (or in place, but in the wrong orientation) contributes
at least 2 squares. Furthermore, if any corner is out of place, then
at least two are, so the corners contribute either 0 or at least 4
squares. Now we see that the only combinations possible are:
- centers
- centers and edges
- corners
- corners and edges
- edges
The first four cases are easy to handle. For case 1, the only
pattern is 6 dots:
|
1.
|
R L' F B' U D' R L' Cufr
|
(8q*, 8f*)
|
(U, F, R) (D, B, L)
|
For case 2, we must have 4 centers and 2 edges out of place.
Again, there is only one suitable pattern.
|
2.
|
F R2 L U B' R' B R2 L' F' U R' D' F Cd
|
(16q*, 14f*)
|
(F, R, B, L) (UR, DR)
|
For case 3, there are two possibilities: two corners rotated in
place, or a three cycle of corners. Each possibility yields exactly
one suitable pattern.
|
3.
|
F' U B' U' F U L F L' B L F' L' U'
|
(14q*, 14f)
|
F D2 F' L U2 L' F D2 F' L
U2 L'
|
(12f*, 16q)
|
|
(UFR-) (DLB+)
|
|
4.
|
F R U2 L' U' R2 U L U' R2 U' R' F'
|
(16q*, 13f)
|
F2 R U2 R' U2 R' F2 R
U2 R U2 R'
|
(12f*, 18q)
|
|
(ULF, URB, DRF)
|
For case 4, the only possible cycle structure is a two cycle of
corners and a two cycle of edges. Then it is easy to see that there
is only one suitable pattern.
|
5.
|
F U' R F' U F B U B' R' F D' F D F
|
(15q*, 15f)
|
F R' U B U2 L2 D F D' L2 U B' R F'
|
(14f*, 17q)
|
|
(UFR, UBL) (UR, DR)
|
Case 5 is the most interesting and accounts for most of the patterns.
Consider different types of cycles of edges. Here (n) denotes an
n-cycle and (n+) denotes a flipped n-cycle of edges.
cycle
|
|
# of squares with wrong color
|
|
|
(1+)
|
|
|
2
|
(2)
|
|
|
2 or 4
|
(2+)
|
|
|
3 or 4
|
(3), (3+)
|
|
|
3, 4, 5 or 6
|
(4), (4+)
|
|
|
4, 5, 6 or more
|
(5), (5+)
|
|
|
5, 6 or more
|
(6), (6+)
|
|
|
6 or more
|
These may be combined in many ways to give a possible total of 6
squares, but only a few have both the correct parity and correct edge flip.
These combinations are:
(1+)(3+), (2)(2), (2)(4), (2+)(2+), (3)(3), (3+)(3+), (3), and (5).
We list the patterns here without going into detail about their enumeration.
Cycle structure (1+)(3+):
|
6.
|
L F' L U B L2 B' L' U' F L2 F2 L
|
(16q*, 13f*)
|
|
(LB+) (FD, FU, FR+)
|
|
7.
|
(inverse of 6)
|
|
8.
|
F U D' L' B D' B' U' D L D L'
|
(12q*, 12f*)
|
|
(LB+) (FU, FR, FD+)
|
|
9.
|
U' F2 U F' L' F' D' B' U L B L' D
|
(14q*, 13f*)
|
|
(LB+) (UR, UF, DF+)
|
|
10.
|
(inverse of 9)
|
|
11.
|
B L' D' F2 L' F' D L D F' B R' B2 L
|
(16q*, 14f*)
|
|
(LB+) (UR, FR, FD+)
|
Cycle structure (2)(2):
|
12.
|
R L F B U2 F' B' R2 F2 R L'
|
(14q*, 11f)
|
R2 F U2 D2 B2 U2
D2 F R2
|
(9f*, 16q)
|
|
(UF, DF) (RF, LB)
|
|
13.
|
F D R' U2 F2 D2 L' U2
B2 D F'
|
(16q*, 11f*)
|
|
(UF, DF) (RF, BL)
|
|
14.
|
F' B' U D' F' U' D R2 F B' D' B2
|
(14q*, 12f)
|
U' R2 F2 U B2 L2
F2 D B2 U
|
(10f*, 16q)
|
|
(UF, UR) (UB, DL)
|
|
15.
|
L B' U' B U L2 F U F' U' L
|
(12q*, 11f*)
|
|
(UF, UR) (UB, LD)
|
Cycle structure (2)(4):
|
16.
|
R L F B D2 F B R2 B2 R' L
|
(14q*, 11f)
|
R2 U D R2 B2 U' D' R2
F2 U2
|
(10f*, 16q)
|
|
(UF, DF) (FR, BR, BL, FL)
|
|
17.
|
F' B' U2 F B' U R L U2 R L D L2
|
(16q*, 13f)
|
F B D2 B2 U2 F' B' D F2
B2 U' L2
|
(12f*, 18q)
|
|
(UL, UB) (UF, DF, DR, UR)
|
Cycle structure (2+)(2+):
|
18.
|
F U' R L' B L' B R' L U' L F'
|
(12q*, 12f*)
|
|
(UL, UR+) (DF, DB+)
|
|
19.
|
F' L2 U R L' B' L B' R' L U L F
|
(14q*, 13f*)
|
|
(UF, UR+) (DL, DB+)
|
|
20.
|
F B R' F B' U' R' L B R L' U F2
|
(14q*, 13f*)
|
|
(UF, UR+) (DB, DL+)
|
|
21.
|
U R' F' B D' F B' R U' D F D'
|
(12q*, 12f*)
|
|
(UF, RF+) (LB, LD+)
|
|
22.
|
R' D' F' U D' L D2 L U' D F' D' R
|
(14q*, 13f*)
|
|
(UF, RF+) (LD, LB+)
|
|
23.
|
(inverse of 22.)
|
Cycle structure (3)(3): No solutions.
Cycle structure (3+)(3+):
|
24.
|
F D B D' B U D' L' F L U' D B2 D' F'
|
(16q*, 15f*)
|
|
(UF, RF, RU+) (DB, LB, LD+)
|
|
25.
|
F D F2 B2 D' F D F B' R' D' F' R F B' D'
|
(18q*, 16f*)
|
|
(UF, UR, FR+) (DB, LB, LD+)
|
Cycle structure (3):
|
26.
|
F R' U D' F' U' D R F' B U B'
|
(12q*, 12f*)
|
|
(RB, FD, UL)
|
|
27.
|
R' U R' L F2 R L' U R
|
(10q*, 9f*)
|
|
(RB, FD, LU)
|
Cycle structure (5):
|
28.
|
F' L U' F' B2 D' F B' L B' U L' F
|
(14q*, 13f)
|
U F2 R2 F2 U' F2
R2 F2 U2
|
(9f*, 16q)
|
|
(UF, UB, UL, UR, DR)
|
|
29.
|
(inverse of 28.)
|
|
30.
|
L2 U' F2 B2 D F B' D2 F B'
|
(14q*, 10f*)
|
|
(UB, UL, UF, UR, DR)
|
|
31.
|
(inverse of 30.)
|
|
32.
|
R' U' R U' R U R U R2 U2 R' U'
|
(14q*, 12f)
|
F2 R2 B2 D F2
L2 F2 D' F2 B2
U2
|
(11f*, 20q)
|
|
(UL, UF, UB, UR, DR)
|
|
33.
|
(inverse of 32.)
|
|
|
34.
|
F' L' F R' L F' R L' U F' L F
|
(12q*, 12f)
|
R L B2 R' L U' R2 L2 D'
R2
|
(10f*, 14q)
|
|
(UB, UR, UF, DF, DL)
|
|
35.
|
(inverse of 34.)
|
|
36.
|
U' R L U' D L U D' R L' D' R2 U
|
(14q*, 13f)
|
F B' U2 F B L2 U F2 L2
F2 U
|
(11f*, 16q)
|
|
(UR, UB, UF, DF, DL)
|
|
37.
|
(inverse of 36.)
|
|
|
38.
|
B' L U B' L' B' U' B' L U B2
|
(12q*, 11f*)
|
|
(UB, UR, UF, LF, LD)
|
|
39.
|
(inverse of 38.)
|
|
40.
|
R' L' U L U R B2 L' F B2 U' F'
|
(14q*, 12f*)
|
|
(UR, UB, UF, LF, LD)
|
|
41.
|
(inverse of 40.)
|
|
|
42.
|
F R' B' D' F' U' D R U B R F'
|
(12q*, 12f*)
|
|
(UR, UB, UF, LF, DF)
|
|
43.
|
(inverse of 42.)
|
|
44.
|
F' L' U' R U R' L F' L' U L F
|
(12q*, 12f*)
|
|
(UB, UR, UF, LF, DF)
|
|
45.
|
F U' F' U' F U2 F2 U' F U F U'
|
(14q*, 12f*)
|
|
(UR, UB, UF, DF, LF)
|
|
|
46.
|
D' F D F U R U' D R' U D' R' U' F'
|
(14q*, 14f)
|
D R2 F' L2 U2 R2 B
R2 U' B2 L2 F2
|
(12f*, 20q)
|
|
(LF, UF, UB, UR, DR)
|
|
47.
|
(inverse of 46.)
|
|
|
48.
|
D' R F' R2 F' R L' U R L F R' D
|
(14q*, 13f)
|
R2 D R2 F2 L2 U'
R2 B' R2 U2 L2 F
|
(12f*, 20q)
|
|
(DB, UB, UR, UF, LF)
|
|
49.
|
(inverse of 48.)
|
|
|
50.
|
F' B R2 F B' U F B' R2 F' B U D2
|
(16q*, 13f)
|
U F2 B2 D R2 D F2
B2 U' L2 U2
|
(11f*, 18q)
|
|
(DL, DR, UR, UF, UB)
|
|
51.
|
(inverse of 50.)
|
|
|
52.
|
D2 R B U B R U' R' B' U' B' D2
|
(14q*, 12f*)
|
|
(DL, DF, UF, UR, BR)
|
|
53.
|
(inverse of 52.)
|
|
|
54.
|
F D R U2 D2 R U D' F' U D' R' D' F'
|
(16q*, 14f)
|
B' D2 F2 R U2 F' L2
U2 R2 B U2 L' B'
|
(13f*, 20q)
|
|
(UL, UR, FR, FD, BD)
|
|
|
55.
|
F D' F2 L B R L' D' R' F2 D F'
|
(14q*, 12f*)
|
|
(DL, FL, FR, BR, BU)
|
|
|
56.
|
L' U' L U D' F' D F B' R' B R
|
(12q*, 12f*)
|
|
(BR, DR, DF, LF, LU)
|
A given position gives (up to) 48 different positions by applying
symmetries of the cube. However, these need not be distinct. The original
position is fixed by some subgroup H of the group G of symmetries of
the cube. Now the positions equivalent to the original position are in
one-to-one correspondence with the cosets G / H , and thus their number
is |G| / |H| = 48 / |H|.
For example, position number 1 has six symmetries, generated by the
rotation Cufr and central reflection.
The same is true for positions
3 and 24, so each of the corresponding patterns is represented by 8
different positions.
Positions 2, 12, 13 and 16 each have 2 symmetries, generated by the
reflection through the U-D plane. Positions 4 and 26 each have three
symmetries, generated by the rotation Cufr.
Positions 18, 19, 22 and 23
each have 2 symmetries, generated by the rotation Cfl.
Position 20 has 2 symmetries, generated by central reflection.
Position 25 has 6 symmetries,
generated by the rotations Cufr and Cfl.
The remaining 41 positions
have only the identity symmetry. Therefore, we have
3 * 8 + 4 * 24 + 2 * 16 + 4 * 24 + 1 * 24 + 1 * 8 + 41 * 48 = 2248
positions.
Reference
[1] David Singmaster, Cubic Circular 5&6, (Autumn & Winter 1982),
p. 25.
Addendum
Herbert Kociemba has confirmed my hand count of these Czech check patterns
using his fabulous
pattern explorer.
Cube page |
Home page |
E-mail
Updated October 28, 2006.